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ABSTRACT 

Soil organic carbon (SOC) plays a critical role in soil health and also in maintaining its 

ecological service. The stabilization of SOC involves physical, chemical, and biological 

processes in soil. Soil microorganisms serve as a carbon (C) biological sink as well as 

biochemical agents in C transformation in soil. The plant litter inputs and root exudates provide 

microorganisms with both labile and recalcitrant C sources. The C availability and soil habitat 

environment alter microbiota, consequently impacting the organic C decomposition processes 

in soil. Anthropogenic disturbances such as organic amendments, contaminants, tillage and 

grazing practices impact soil ‘biophysicochemical’ properties. The addition of organic C 

sources such as manure composts and biochar can lead to processes such as priming effect 

and microbial population shifts. In metal contaminated soils, organic-metal bonding can be 

beneficial to the immobilization of heavy metals, thereby reducing their bioavailability and 

biotoxicity. Microorganisms also develop strategies for the purpose to adapt to soil 

environment stress conditions. These stress tolerance processes include alteration of 

microbial community composition, and the redistribution of energy between catabolism 

(respired CO2) and anabolism (biomass C).  

Although a number of studies have examined soil C biogeochemical dynamics, very few 

comprehensive studies have been reported on the role of soil microorganisms in relation to 

the mobilization and immobilization ((im)mobilization) processes of organic C dynamics. In 

this research, soil microbial function and community composition in relation to C dynamics as 

affected by environmental factors were investigated. The definition of ‘microbial carbon use 

efficiency’ (CUE) was introduced for the purpose of assessing the fraction of microbially 

decomposed organic C that is subsequently assimilated into microbial biomass. The specific 

objectives of this research include: (i) to determine microbial CUE involving different 

approaches in relation with various sources of C and nitrogen (N) inputs; (ii) to investigate the 

influence of land use practices on soil microbial functions in relation to CUE; (iii) to evaluate 

metal stress on microbial function in relation to CUE; and (iv) to examine the influence of 

biochar on metal toxicity in relation to microbial CUE.  

The first experiment was aimed to compare four approaches to measure microbial CUE using 

isotopic labelled glucose as an organic C source. The first approach (Cs) for microbial CUE 

measurement was based on monitoring C depletion, while the second (Cm) and third (Cp) 

approaches were based on detecting of microbial biomass accumulation, the forth approach 

(Cr) was aimed at calculating the ratio of the increased microbial biomass to the decreased C 

content. The microbial CUE values varied amongst the four approaches, and the Cm values 
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were generally higher than other measurements. Because the main aims of the subsequent 

experiments were to understand the microbial mediation of soil C and the accumulation of C 

in microbial community, the microbial CUE measurement based on the accumulation of 

microbial biomass C (Cm) was used in the remaining chapters. In the first experiment, the 13C 

labelled glucose was evenly applied to soils to trace the C flow as measured by the release of 

CO2, C incorporation into microbial biomass, and C remaining as undecomposed C input. 

Microbial phospholipid fatty acids (PLFAs) were extracted and analysed as biomarkers in 

order to identify the microbial community composition. Results revealed that organic 

amendment coupled with mineral N [(NH4)2SO4] stimulated both microbial activity and biomass, 

leading to a positive priming effect (PE). However, as different C:N ratios were introduced in 

this experiment, the PE intensity stimulated by different exogenous C and mineral N sources 

showed variation amongst C sources, similar to microbial CUE values as determined by above 

approaches. The labile C source (glucose) with low N contributed to relatively higher microbial 

PE. Microbial community varied with C input sources, the readily available C source (glucose) 

favoured bacteria community growth over fungi, while fungi population increased with mineral 

N application. In conclusion, microbial CUE measurements are related to the methods and 

parameters used, and the C use preference and community composition are highly dependent 

on the exogenous C and mineral sources.  

Based on the microbial CUE measurement results of the first experiment, the second 

experiment used soils from three land use systems: cropping, pasture and natural forest soil. 

Three types of organic amendments were introduced: glucose as a labile C source, and wheat 

straw and macadamia nutshell biochar as a relatively recalcitrant C material. Microbial 

biomass C, and basal and substrate-induced respiration were measured to determine 

microbial CUE. Microbial community composition was determined based on the measurement 

of PLFAs. Land use history generally affects soil physiochemical and microbial properties. The 

natural forest soil had the highest organic C content while having relatively low soil nutrient 

contents. Because of constant disturbance and management, cropping soil had relatively 

lower values in microbial activity and biomass. Although there were no significant differences 

of microbial CUE values in soils from different land systems, the organic amendments lead to 

distinct microbial CUE values. Therefore, the exogenous C source applied to cropping land 

during cultivation played a more important role in terms of microbial C use preference. Glucose 

input significantly (p > 0.05) increased microbial respiration with less biomass formation, 

thereby resulting in a decrease in microbial CUE, while wheat straw and biochar inputs 

increased microbial CUE compared to glucose. However, microbial community composition 

differed among land use systems. Fungi was dominant in natural forest soil while bacteria 

population was larger in cropping and pasture soils. The type of organic amendment inputs 
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also altered microbial community composition. The addition of an easily degradable C source 

such as glucose stimulated a growth in Gram-positive bacteria, while biochar input favoured 

fungi population growth.  

The biotoxicity of heavy metal(loid)s was evaluated by monitoring microbial CUE and 

community composition in soil samples spiked with Cd(II) and Pb(II), both individually and in 

combination. The bioavailable metal concentrations, soil properties, and microbial parameters 

including microbial respiration, biomass and microbial PLFAs were determined at two 

sampling periods during the 49 days incubation experiments. Microbial CUE was determined 

as the ratio of accumulated biomass to decomposed C amount. Metal contamination had no 

significant effect on (p > 0.05) on soil properties such as pH and EC, while significantly (p < 

0.05) inhibiting microbial activity and biomass formation. Notably, the microbial CUE 

decreased due to metal contamination, and the higher heavy metal concentration lead to lower 

microbial CUE values. Both total PLFAs and PLFA diversity decreased under metal stress. 

The microbial community composition and PLFA patterns also differed among treatments. 

Heavy metal pollution had greater negative influences on fungi population compared to 

bacteria. This might result in a vulnerable soil ecosystem with less resilience ability.  

Based on the third experiment, biochar was introduced as an effective method for the 

remediation of metal contaminated soils. In this fourth experiment, Cd and Pb spiked soils 

treated with macadamia nutshell biochar (5% w/w) were monitored during a 49 days 

incubation period. Soil properties, metal bioavailability, microbial respiration, and microbial 

biomass C were measured after the incubation period. Microbial CUE was calculated from the 

ratio of C incorporated into microbial biomass to the C mineralised. Microbial community 

composition was determined by measuring microbial PLFAs. Results showed that total PLFA 

concentration decreased to a greater extent in metal contaminated soils than uncontaminated 

soils. Microbial CUE also decreased due to metal toxicity. However, biochar addition alleviated 

the metal toxicity, and increased total PLFA concentration. Both microbial respiration and 

biomass C increased due to biochar application, and CUE was significantly (p < 0.01) higher 

in biochar treated soils than untreated soils. Heavy metals reduced the microbial C 

sequestration in contaminated soils by negatively influencing the CUE. The improvement of 

CUE through biochar addition in the contaminated soils could be attributed to the decrease in 

metal bioavailability, thereby mitigating the biotoxicity to soil microorganisms.  

In conclusion, microbial properties are essential indicators in the determination of soil health. 

The microbial CUE values vary depending on the measurement adopted. As such, there is a 

need for a comprehensive conceptual understanding and unified method of determination of 

microbial CUE. For the purpose of this research, the microbial CUE measured based on the 

accumulation of microbial biomass was more appropriate to examine microbial function in 
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terms of microbial C utilization. Land use histories, organic amendments and environmental 

factor all alter the direction and dimension of microbial CUE, as well altering the microbial 

community composition. Especially certain microbial species such as bacteria and fungi could 

reveal soil functional status because of the difference in C use and allocation preference 

among these communities. Biochar could be beneficial to microbiota under metal stress, not 

only because of its high C content, but also because of its remediation ability as metal sorbents.  

 

  



xix 

DECLARATION 

I hereby certify that the work embodied in the thesis is my own work, conducted under normal 

supervision. 

The thesis contains published scholarly work of which I am a co-author. As the author of this 

Elsevier article, I retain the right to include it in a thesis or dissertation, provided it is not 

published commercially.  The article in Science of the Total Environment Journal is the original 

source. 

The thesis contains no other material which has been accepted, or is being examined, for the 

award of any other degree or diploma in any university or other tertiary institution and, to the 

best of my knowledge and belief, contains no material previously published or written by 

another person, except where due reference has been made in the text. I give consent to the 

final version of my thesis being made available worldwide when deposited in the University’s 

Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved 

embargo. 

Yilu Xu 

Signed___ ____   Date___03/03/2018___________ 



xx 
 

ACKNOWLEDGEMENTS 

With all my immense gratefulness, I express first and foremost my gratitude and respect to my 

principal supervisor, Professor Nanthi Bolan, a great mentor and one of the world leading 

scientists in soil science research. All through my candidature, he has been available and 

promptly responding to my research queries, inspiring and encouraging me to achieve high 

quality research work. I cannot image my career life without his invaluable support and 

guidance. Any words would not be enough to express my thanks to him. Professor Nanthi 

Bolan has been and still is an exceptional role model to me, in scientific area and human virtue.  

Great thanks to my co-supervisor Dr. Balaji Seshadri and Dr. Mark Farrell, both are 

experienced senior research scientists, for their excellent guidance and assistance. I always 

value the ideas and suggestions that were raised up during our meetings.  

It is with great honour for me to study and complete my research in Global Center for 

Environmental Remediation (GCER) and University of Newcastle.  The valuable support and 

outstanding facilities enabled me to have this opportunity to pursue this high degree research. 

And a special acknowledgement to University of South Australia, where I began my Ph.D 

journey, for the support of most parts of my experiments.  

To Professor Ravi Naidu, a world leading scientist and a real gentleman in life. Thanks to 

Professor Petra Marschner. I am extremely thankful to her constructive suggestions during my 

experiments preparation and for her technical support.  

To my dearest friends and staffs Dr. Morrow Dong, Dr. Jason Du, Dr. Fangjie Qi, Dr. Yanju 

Liu, Mr. Kenny Yan, Dr. Luchun Duan, who took me in as part of their families, who diverted 

my attention when I was frustrated with writing. It was them that have helped me and 

companied me through all the difficulties, I will never forget the times I spend in Australia 

because they have made the time here more precious and memorable. When I look back, I 

realize I have grown up so much and turned into a person that I have never thought I could 

become. And you are all part of it.  

I wish I could have the opportunity to express my appreciation person by person for their 

priceless participation in my life. Thanks also to Mr. Stuart, who kindly provided his land for 

my soil sampling. To Dr. Qiaoqi Sun, Dr. Jack Zeng, Dr. Li Yu and Mr. Congling Cheng, who 

have helped me at the beginning of my Ph.D.  

I would like to dedicate this Ph.D thesis to my dear parents, Mrs. Meifang Jin and Mr. Shiming 

Xu. They are my backbone and my home. Although I used to say I am ‘homeless’ in Australia, 

I never really felt afraid or regret because of their caring and supporting. 致我亲爱的父母, 谢



xxi 
 

谢你们. A special ‘Dankeschön’ to Florian Faulenbach. There were many dark nights with 

tears and frustration, the faith and companionship that he gave me helped me to pick up the 

courage and stand up again from the hopelessness. When you close the cover of a book, you 

have to fade out of one story and drift away from the characters. That is why life is measured 

by nodes and time points. Nevertheless, the beloved ones will stay a lifetime long. And I am 

eternally grateful to those people in my life.  

One of my favourite German philosophers Friedrich Wilhelm Nietzsche wrote “Was mich nicht 

umbringt, macht mich stärker”. I believe a ‘life’ should be a constant flow contains both of 

happiness and sorrow. Those two parts complete me and make me the person who I am, and 

I would never want a life without hardness and sadness. 


